11 research outputs found

    Blockchain for the metaverse: A Review

    Get PDF
    Since Facebook officially changed its name to Meta in Oct. 2021, the metaverse has become a new norm of social networks and three-dimensional (3D) virtual worlds. The metaverse aims to bring 3D immersive and personalized experiences to users by leveraging many pertinent technologies. Despite great attention and benefits, a natural question in the metaverse is how to secure its users’ digital content and data. In this regard, blockchain is a promising solution owing to its distinct features of decentralization, immutability, and transparency. To better understand the role of blockchain in the metaverse, we aim to provide an extensive survey on the applications of blockchain for the metaverse. We first present a preliminary to blockchain and the metaverse and highlight the motivations behind the use of blockchain for the metaverse. Next, we extensively discuss blockchain-based methods for the metaverse from technical perspectives, such as data acquisition, data storage, data sharing, data interoperability, and data privacy preservation. For each perspective, we first discuss the technical challenges of the metaverse and then highlight how blockchain can help. Moreover, we investigate the impact of blockchain on key-enabling technologies in the metaverse, including Internet-of-Things, digital twins, multi-sensory and immersive applications, artificial intelligence, and big data. We also present some major projects to showcase the role of blockchain in metaverse applications and services. Finally, we present some promising directions to drive further research innovations and developments toward the use of blockchain in the metaverse in the future

    Novel MEC based Approaches for Smart Hospitals to Combat COVID-19 Pandemic

    Get PDF
    COVID-19 or Coronavirus has thrilled the entire world population with uncertainty over their survival and well-being. The impact this pathogen has caused over the globe has been profound due to its unique transmission features; that urges for contact-less strategies to interact and treat the infected. The impending 5G mobile technology is immersing the applications that enable the provisioning of medical and healthcare services in a contact-less manner. The edge computing paradigms offer a de-centralized and versatile networking infrastructure capable of adhering to the novel demands of 5G. In this article, we are considering Multi-Access Edge Computing (MEC) flavour of the edge paradigms for realizing the contact-less approaches that assist the mediation of COVID-19 and the future of healthcare. In order to formulate this ideology, we propose three use cases and discuss their implementation in the MEC context. Further, the requirements for launching these services are provided. Additionally, we validate our proposed approaches through simulations.European CommissionAcademy of Finlan

    MEC-enabled 5G use cases:a survey on security vulnerabilities and countermeasures

    No full text
    Abstract The future of mobile and internet technologies are manifesting advancements beyond the existing scope of science. The concepts of automated driving, augmented-reality, and machine-type-communication are quite sophisticated and require an elevation of the current mobile infrastructure for launching. The fifth-generation (5G) mobile technology serves as the solution, though it lacks a proximate networking infrastructure to satisfy the service guarantees. Multi-access Edge Computing (MEC) envisages such an edge computing platform. In this survey, we are revealing security vulnerabilities of key 5G-based use cases deployed in the MEC context. Probable security flows of each case are specified, while countermeasures are proposed for mitigating them

    Realizing multi-access edge computing feasibility:security perspective

    No full text
    Abstract Internet of Things (IoT) and 5G are emerging technologies that prompt a mobile service platform capable of provisioning billions of communication devices which enable ubiquitous computing and ambient intelligence. These novel approaches are guaranteeing gigabit-level bandwidth, ultra-low latency and ultra-high storage capacity for their subscribers. To achieve these limitations, ETSI has introduced the paradigm of Multi-Access Edge Computing (MEC) for creating efficient data processing architecture extending the cloud computing capabilities in the Radio Access Network (RAN). Despite the gained enhancements to the mobile network, MEC is subjected to security challenges raised from the heterogeneity of IoT services, intricacies in integrating virtualization technologies, and maintaining the performance guarantees of the mobile networks (i.e. 5G). In this paper, we are identifying the probable threat vectors in a typical MEC deployment scenario that comply with the ETSI standards. We analyse the identified threat vectors and propose solutions to mitigate them

    Survey on multi-access edge computing security and privacy

    Get PDF
    Abstract The European Telecommunications Standards Institute (ETSI) has introduced the paradigm of Multi-Access Edge Computing (MEC) to enable efficient and fast data processing in mobile networks. Among other technological requirements, security and privacy are significant factors in the realization of MEC deployments. In this paper, we analyse the security and privacy of the MEC system. We introduce a thorough investigation of the identification and the analysis of threat vectors in the ETSI standardized MEC architecture. Furthermore, we analyse the vulnerabilities leading to the identified threat vectors and propose potential security solutions to overcome these vulnerabilities. The privacy issues of MEC are also highlighted, and clear objectives for preserving privacy are defined. Finally, we present future directives to enhance the security and privacy of MEC services

    Novel MEC based approaches for smart hospitals to combat COVID-19 pandemic

    No full text
    Abstract COVID-19 or Coronavirus has thrilled the entire world population with uncertainty over their survival and well-being. The impact this pathogen has caused over the globe has been profound due to its unique transmission features; that urges for contact-less strategies to interact and treat the infected. The impending 5G mobile technology is immersing the applications that enable the provisioning of medical and healthcare services in a contact-less manner. The edge computing paradigms offer a de-centralized and versatile networking infrastructure capable of adhering to the novel demands of 5G. In this article, we are considering Multi-Access Edge Computing (MEC) flavour of the edge paradigms for realizing the contact-less approaches that assist the mediation of COVID-19 and the future of healthcare. In order to formulate this ideology, we propose three use cases and discuss their implementation in the MEC context. Further, the requirements for launching these services are provided. Additionally, we validate our proposed approaches through simulations

    Open RAN security:challenges and opportunities

    No full text
    Abstract Open RAN (ORAN, O-RAN) represents a novel industry-level standard for RAN (Radio Access Network), which defines interfaces that support inter-operation between vendors’ equipment and offer network flexibility at a lower cost. Open RAN integrates the benefits and advancements of network softwarization and Artificial Intelligence to enhance the operation of RAN devices and operations. Open RAN offers new possibilities so different stakeholders can develop the RAN solution in this open ecosystem. However, the benefits of Open RAN bring new security and privacy challenges. As Open RAN offers an entirely different RAN configuration than what exists today, it could lead to severe security and privacy issues if mismanaged, and stakeholders are understandably taking a cautious approach towards the security of Open RAN deployment. In particular, this paper analyzes the security and privacy risks and challenges associated with Open RAN architecture. Then, it discusses possible security and privacy solutions to secure Open RAN architecture and presents relevant security standardization efforts relevant to Open RAN security. Finally, we discuss how Open RAN can be used to deploy more advanced security and privacy solutions in 5G and beyond RAN

    Realizing contact-less applications with multi-access edge computing

    No full text
    Abstract The entire world progression has ceased with the unexpected outbreak of the COVID-19 pandemic, and urges the requirement for contact-less and autonomous services and applications. Realizing these predominantly Internet of Things (IoT) based applications demands a holistic pervasive computing infrastructure. In this paper, we conduct a survey to determine the possible pervasive approaches for utilizing the Multi-Access Edge Computing (MEC) infrastructure in realizing the requirements of emerging IoT applications. We have formalized specific architectural layouts for the considered IoT applications, while specifying network-level requirements to realize such approaches; and conducted a simulation to test the feasibility of proposed MEC approaches

    Dynamic orchestration of security services at fog nodes for 5G IoT

    Get PDF
    Abstract Fog Computing is one of the edge computing paradigms that envisages being the proximate processing and storage infrastructure for a multitude of IoT appliances. With its dynamic deployability as a medium level cloud service, fog nodes are enabling heterogeneous service provisioning infrastructure that features scalability, interoperability, and adaptability. Out of the various 5G based services possible with the fog computing platforms, security services are imperative but minimally investigated direct live. Thus, in this research, we are focused on launching security services in a fog node with an architecture capable of provisioning on-demand service requests. As the fog nodes are constrained on resources, our intention is to integrate light-weight virtualization technology such as Docker for forming the service provisioning infrastructure. We managed to launch multiple security instances configured to be Intrusion Detection and Prevention Systems (IDPSs) on the fog infrastructure emulated via a Raspberry Pi-4 device. This environment was tested with multiple network flows to validate its feasibility. In our proposed architecture, orchestration strategies performed by the security orchestrator were stated as guidelines for achieving pragmatic, dynamic orchestration with fog in IoT deployments. The results of this research guarantee the possibility of developing an ambient security service model that facilitates IoT devices with enhanced security

    Security as a service platform leveraging multi-access edge computing infrastructure provisions

    Get PDF
    Abstract The mobile service platform envisaged by emerging IoT and 5G is guaranteeing gigabit-level bandwidth, ultra-low latency and ultra-high storage capacity for their subscribers. In spite of the variety of applications plausible with the envisaged technologies, security is a demanding objective that should be applied beyond the design stages. Thus, Security as a Service (SECaaS) is an initiative for a service model that enable mobile and IoT consumers with diverse security functions such as Intrusion Detection and Prevention (IDPaaS), Authentication (AaaS), and Secure Transmission Channel (STCaaS) as a Service. A well-equipped edge computing infrastructure is intrinsic to achieve this goal. The emerging Multi-Access Edge Computing (MEC) paradigm standardized by the ETSI is excelling among other edge computing flavours due to its well-defined structure and protocols. Thus, in our directive, we intend to utilize MEC as the edge computing platform to launch the SECaaS functions. Though, the actual development of a MEC infrastructure is highly dependent on the integration of virtualization technologies to enable dynamic creation, the deployment, and the detachment of virtualized entities that should feature interoperability to cater the heterogeneous IoT devices and services. To that extent, this work is proposing a security service architecture that offers these SECaaS services. Further, we validate our proposed architecture through the development of a virtualized infrastructure that integrates lightweight and hypervisor-based virtualization technologies. Our experiments prove the plausibility of launching multiple security instances on the developed prototype edge platform
    corecore